Device Fuse Selection Guide
AN-G005
PURPOSE

This article demonstrates how to select the main fuse for a system that has two or more power supplies installed. It also provides insight to discern the implication of the inrush current peak-time factor versus the product operating RMS current.

DESCRIPTION

Fuses are overcurrent devices that protect electrical and electronic devices by melting and opening a circuit. Selecting the right fuse will prevent excessive current from causing damage or starting a fire and prevent a nuisance fuse clearing during a temporary heavy current draw upon initial power-ups. Fuses are designed and specified to be a circuit’s weakest link.

FUZE SELECTION

Things consider when selecting a fuse:
1. **Voltage rating:** The voltage rating of a fuse must be equal to or greater than the maximum operating voltage of the power supplies.
2. **Current rating:** The fuse’s minimum current rating is determined by the maximum current consumption that occurs at the maximum output load and the minimum input voltage.
3. **Melting integral \(I^2t \):** The peak inrush current is usually significantly greater than the steady-state current. The inrush current if large enough can melt the element or cause significant thermal stress to the element leading to premature failure. The \(I^2t \) is the amount of energy needed, in terms of current and time, to melt the fuse link.
4. **Temperature derating:** The fuse current rating should be derated in an applied ambient temperature exceeding the standard 23°C.

Steps to select a system or device fuse:
1. Obtain \(I^2t \) from the power supply datasheet if available. If not, calculate the \(I^2t \) from the inrush current either from the datasheet or the actual measurement.
 - Calculate from the datasheet: \(I^2t = (1/2)(I_{inrush_pk})^2(t_{inrush}) \)
 - Calculate from the actual measurement:

 ![Figure 1. Typical Inrush Current Waveshape](image)

 \[I^2t = (1/2)I_p^2 t_1 \]

 where \(I_p \) is the peak inrush current and \(t_1 \) is the time for the current to drop to half its peak value.
2. Determine the required minimum value of the I2t. The number of inrush current pulses the fuse would be exposed to in the application should be considered. Find the pulse derating factor from the fuse manufacture graph. A sample is shown below. The required minimum I2t is $\frac{I^2t}{F}$.

![Pulse-Derating curve](image)

Figure 2. Fuse Derating Curve Sample

3. A selected whole device fuse must meet the following:
 a. Fuse current rating: $(FN_1+FN_2+...+FN_n)\times1.5$
 b. Fuse melting integral rating: $(I^2t_{N1}+I^2t_{N2}+...+I^2t_{Nn})\times1.5$

 Where:
 - FN_1: fuse rating of power supply 1.
 - FN_n: fuse rating of power supply n.
 - I^2t_{N1}: the required minimum I^2t of power supply 1.
 - I^2t_{Nn}: the required minimum I^2t of power supply n.
Similar to fuses, circuit breakers offer circuit protection and are widely used. They come in various forms and trip behavior. They offer either or both thermal and magnetic or electronic trip mechanisms. The magnetic and electronic type circuit breakers offer fast reaction time so shorter duration, but high peak currents may trip these types of circuit breakers.

Figure 3. Electronic Trip Characteristics. Square D - Schneider Electric
Chart I

<table>
<thead>
<tr>
<th>WAVESHAPE</th>
<th>FORMULAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i = k) (\therefore) (I^2t = i^2t)</td>
</tr>
<tr>
<td></td>
<td>(i = iP - kt) (\therefore) (I^2t = (1/3) (i_P^2 + iPib + ib^2)t)</td>
</tr>
<tr>
<td></td>
<td>(i = iP \sin t) (\therefore) (I^2t = (1/2) i_P^2t)</td>
</tr>
<tr>
<td></td>
<td>(I^2t = (1/3) i_P^2t)</td>
</tr>
<tr>
<td></td>
<td>(i = kt^2) or (i = iP(1-kt)^2) (\therefore) (I^2t = (1/5) i_P^2t)</td>
</tr>
<tr>
<td></td>
<td>(i = iPe^{-kt}) (\therefore) (I^2t = (T/2) i_P^2t^t)</td>
</tr>
</tbody>
</table>

Figure 4. From Littlefuse Fuse Selection Guide